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The molecular dynamics method is used to study the effects of anharmonicity on the dynamics of various 
polymer chains. The results show that there is a transition from a regime where the harmonic approximation 
to the molecular vibrations is adequate to a regime where the motion can no longer be accurately described 
with a harmonic approximation. The group vibrations which make up the optical branch of a dispersion 
curve become chaotic in this regime. 
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INTRODUCTION 

Heat capacity is one of the most basic thermal character- 
istics of matter. The information obtained from the heat 
capacity is fundamental to the overall thermodynamic 
description of matter ~. From heat capacity, one can 
derive the other thermodynamic functions such as 
entropy, and thus obtain information on the flexibility 
and conformational ordering of polymers 2. Although 
there are a larger number of polymers for which some 
heat capacities have been measured 3-5, the measurements 
are usually only for limited temperature ranges. 

The ability to reliably predict heat capacities plays an 
important role in thermal analysis 2. A basic part of the 
existing methods for calculating heat capacities for solids 
is the harmonic oscillator. There has also been consider- 
able recent interest in the temperature dependence of heat 
capacity below 1 K and its deviation for amorphous 
polymers from the Debye model. The heat capacity of 
solids should always obey the C v ~ T 3 law for sufficiently 
low temperatures. 

The heat capacity of crystalline polyethylene, as well 
as other crystalline polymers, can be computed from an 
approximate normal mode frequency distribution with 
excellent agreement with experiment up to the premelting 
transition 2. This has been accomplished using the Tarasov 
model 6'7, where a three-dimensional Debye term is used 
for the lower frequencies and a one-dimensional term is 
used for the higher frequencies of the skeletal vibrations. 
The procedure used to obtain a two-parameter experi- 
mental fit for the Tarasov approximation is to use a 
normal mode, isolated chain calculation to assign the 
group vibrations 6'7. From the group vibration spectrum, 
the contribution to the heat capacity is calculated. The 
group vibration contribution to the heat capacity at 
constant volume C v is then subtracted from the experi- 
mental heat capacity to yield the 'experimental heat 
capacity of the skeletal modes' to be fitted to the Tarasov 
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equation. The model appears to work well for crystalline 
and amorphous solids from a few kelvins to the glass 
transition and often for crystals, even up to the melting 
temperature. As the temperature is increased, the contri- 
butions of the high frequency group vibrations to the 
heat capacity increase to become the dominant factor 6'7. 
It is just in this regime of high temperature (energy) that 
anharmonicity should become important. Recent results 
in non-linear dynamics demonstrate that energetic vibra- 
tional motion is actually chaotic motion (see, for 
example, ref. 8). 

In this paper we are interested in investigating the effect 
of anharmonicity on the behaviour of the molecular 
vibrations (skeletal and group) in polymers using mol- 
ecular dynamics. The underlying dynamics will be used 
to obtain information on the effect of anharmonicity on 
the calculation of heat capacity. We have previously 
studied both the condis 9 and melting phase tran- 
sitionsl°'l 1, pyrolysisl2, mechanical properties of 
polymers 13, laser ablation 14, and also, in a preliminary 
study, the temperature dependence of spectra 15. In the 
present paper, we consider three different polymer chains 
and will discuss the existence of collective modes. 

Method 
The molecular dynamics 16-1s method is used to 

simulate the motion of the atoms in a polymer chain. 
The application of the molecular dynamics method to 
polymers presents some unique difficulties. We have given 
a detailed account of this in a previous paper 19. In brief, 
the molecular dynamics method treats atoms as classical 
objects. The position and momenta can be determined 
at any given time by evaluating Hamilton's equations of 
motion, 

dH 6~qi  . dH t3pi 
- = q , ,  - -  - P i  ( 1 )  

c3pi ~t t~qi t~t 
The propagation of the coordinates (qi) and momenta 
(pl) in time (classical trajectory) yields information which 



can be used to study many important properties of 
polymers. In the present paper, we study the dynamics 
of a monatomic -(Se)-N, diatomic -(CO~N, and a triatomic 
~CCO}N chain, where N was varied from 100-5000. Our 
models are restricted to be linear; that is, only bond-bond  
stretching is allowed at a constant angle of 180 °. The 
Hamiltonian is 

N 

H =  1/2 ~ p2/mi+ V(q-qo)+ V[L--(qN--ql)--qo ] (2a) 
i = 1  

where 

o r  

V(q-qo)=D~[1 - e x p {  - a~(q-  q0)}] 2 (2b) 

V(q - qo) = D~o~Z(q - qo) 2 (2c) 

The quantity L represents the fixed length of the chain, 
and periodic boundary conditions are used to connect 
the first and last atoms in the chain as given in equation 
(2). These constraints keep the polymer chain from 
breaking bonds. The parameters for the Hamiltonians 
are given in Table 1. Because we are interested in studying 
the effects of anharmonicity, we want to examine the 
behaviour at temperatures which are sufficiently high to 
allow large amplitude motion and chaos. Our simulations 
provide evidence that the molecular vibrations then occur 
as local type motion rather than a collective motion. 

Initially, a particular temperature is generated by 
placing a random distribution (Monte Carlo) of kinetic 
energy in the chain. The system is then allowed to 
equilibrate this energy by running a trajectory for several 
picoseconds. It has been shown in a previous study that 
the time required to reach a statistical distribution of the 
energy is on a sub-picosecond time scale lz. The average 
temperature is 

Nk(T)=(,=~ p:~/2mi) (3) 

where N is the number of atoms in the chain and k is 
the Boltzmann constant. The average in equation (3) is 
computed from simulations of lOOps using a step size 

Table 1 P a r a m e t e r s  for  the H a m i l t o n i a n  o f  e q u a t i o n  (2) 

~Se)-" M = 79 .942 a m u  
D = 212.26  k J / m o l  

= 2 3 . 9 n m  -1 
K o = 242 595.43 kJ  mol  n m  2 
q0 = 0 . 2 7 3 n m  

~ C O )  -b M c  = 12 a m u  
M o = 16 a m u  
D = 288.78 k J / m o l  

= 1 7 . 7 n m  -1 
K r : 181 878.48 k J / m o l  n m  2 
q0 = 0 . 1 4 3  n m  

~-CCO)- M c = 12 a m u  
M o = 1 6 a m u  
Dcc = 334.72 k J / m o l  
~cc = 19.2 n m -  1 
Krc  c = 257 2 7 4 . 2 9  k J / m o l  n m  2 

Dco = 288.78  k J / m o l  
~co = 1 7 . 7 n m  1 
Krc o = 181 878.48 k J / m o l  n m  2 

Occ = 0 . 1 5 3  n m  

qoco = 0 . 1 4 3  n m  

" References  30 a n d  31 
b Reference  29 
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Table 2 H e a t  capac i t i e s  as a func t ion  o f  t e m p e r a t u r e :  N = 1000; 100 ps 
simulations. The units for the heat capacities are reported as per mole 
of chain atoms 

T (K)  (J /mol  K )  

~Se)- N 1.0 8.32 
18.5 8.32 

112 8.32 
443 8.16 
698 6.82 

~ZO)-  N 9 8.28 
30 8.28 

110 8.28 
650 8.24 

1490 8.20 
2700 8.16 
4200  7.99 
6070 7.91 
8400 7.49 

10 500 7.40 

4:CCO~-N 35 8.32 
288 8.32 

1037 8.28 
2046 8.28 
2926 7.61 

for sampling of eight samples per vibration of the highest 
frequency mode. The constant volume heat capacity is 
determined from the change in the average temperature 
(equation 3) resulting from a given change in energy, 

( E l  - E 2 )  
Cv - (4a) 

( T 1 ) - ( T 2 )  

A second method was also employed. In this method, 
the constant volume heat capacity is calculated from the 
fluctuations of the temperature about its mean 2°, 

3kN 
Cv - (4b) 

[1 - 2N/3 { (( T 2) - ( 7")2)/( T)2}] 

Dispersion curves and time dependent frequencies of 
the optical and acoustical modes are calculated by 
frequency analysing p(K, t), the particle density correlation 
function 

N 

p(K, t)= y, e'"q~"' (5) 
j = l  

For a one-dimensional chain, there will be two peaks 
in the dispersion curve for a two-atom repeating unit 
~CO)-N, one peak for a monatomic ~Se~-N, and three peaks 
for a triatomic ~CCO)-N. The frequency analysis of p(K, t) 
was accomplished using the MUSIC method 21. We have 
not described this remarkable method in this paper, as 
we have described it in our previous s t u d i e s  1 3 ' 2 2 - 2 4  and 
it is also well documented in a recent book by Marple 21. 
Fundamentally, this method generates very accurate 
frequencies from very short trajectories. 

RESULTS AND DISCUSSION 

The constant volume heat capacities for the linear chains 
~Se)-N, ~CO~-N, ~CCO)-N are given in Table 2. The values 
in this table are for the anharmonic model (equation 
(2b)) and are calculated using equation (4a). The heat 
capacity as a function of temperature for the harmonic 
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model (equation (2c)) always yields a value of Cv = R, 
independent of temperature. The harmonic results are 
not shown in Table 2. We mention briefly that our 
simulations were able to obtain the correct limit for the 
heat capacity of a set of N harmonic oscillators (MR, 
where M is the number of dimensions of space; here, 
M=I ) .  

The heat capacity of the anharmonic models reveals 
that for low temperatures the values are the same as for 
the harmonic calculations Cv/R, but at higher tempera- 
tures, Cv/R begins to decrease. This deviation of the heat 
capacity is due to anharmonicity. The question is, why 
does the heat capacity change at all since we are using 
classical mechanics, which assumes that there are a 
continuum of states available at all times? The answer 
lies in the assumptions used in the equation for the heat 
capacity, equation (4a). The average energy of a molecule 
in a system of independent molecules is ~5 

E _ ~  H e-#" dP1.--dq~ (6) 

f f  e -#H dP1.. .dqs 

Given that the Hamiltonian is a harmonic oscillator, 

n = p2/2m + (K/2)X 2 (7) 

evaluation of the integrals in equation (6) gives E =  ½K T + 
½KT. Each quadratic term in equation (7) contributes ½ 
of the total energy, i.e., E =  ½KE +½PE. If, however, we 
ask what is the distribution of an energy E between the 
kinetic and potential energy for an anharmonic oscillator, 
it is not clear that one should expect to find the same 
equi-partition. In fact, we find that in the simulations 
there is a critical value of temperature at which the 
equi-partition (thus, the harmonic approximation) is no 
longer valid. This temperature is dependent on the 
particular chain. For -(CO~-u the anharmonicity begins 
to become important at approximately 1490 K; for -(Se~-u, 
443 K; and for -(CCO~-u, 2926 K. 

In each of the polymer chains, we see a decrease in 
the heat caPacity above this critical temperature. This 
indicates that the deviation from an equi-partition of 
energy is toward a decrease in potential energy. This can 
be seen by examining equation (4a). For Cv to decrease, 
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Figure 1 (a) Time dependent frequencies of S(k, ~o) for k=2rm/L=O.116756% 1 at 10 K for the -(-CO-)- chain; (b) same as (a) except for 300K;  (c) 
same as (a) except for 4000 K; (d) same as (e) except for the harmonic model of-(CO)- 
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the change in temperature must increase. For  a set of M 
coupled anharmonic oscillators, the energy in the system 
must become localized such as to cause the bond-bond  
displacement of one or more bonds to become large. In 
the limit, each of the M bonds will be broken and there 
will be M + 1 atoms with translational motion. The heat 
capacity Cv should thus go from R to R/2. 

It should be pointed out that we are only treating 
bond-bond motion. The effect of adding bending and 
hindered rotations will be discussed in a future paper ~ ~. 

From Table 2, we have found several important 
features. First, the heat capacity is the same as that 
calculated from a harmonic model at low temperatures. 
Second, there is some critical temperature at which the 
anharmonicity begins to cause the heat capacity to 
decrease. Third, the decrease is due to a decrease of 
potential energy as compared to the equi-partition 
theory. In a limit of complete decomposition, one should 
expect that the heat capacity decreases to ½R. This 
decrease is due to a change from vibrations to translations. 
There are no modes that are frozen out. In contrast to 
this observation, it has recently been suggested that for 
N atom chains the optical (high frequency) modes 
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become frozen out, and thus, besides a decrease in 
heat capacity, one would not observe the ultraviolet 
catastrophe, even from a classical viewpoint 24. In the 
present case, we observe a decrease in heat capacity, but 
for a different reason. 

Examination of the time-dependent frequencies of the 
optical and acoustical modes of ~CO-)N [anharmonic 
model] gives some interesting insight into the behaviour 
of the optical mode. Figure 1 is a plot of the optical (high 
frequency) and acoustical (low frequency) modes as a 
function of time at different temperatures. Comparison 
of Figures la, b, and c shows the effect of temperature. 
As the temperature is increased from 10 (Figure la) to 
300 (Figure lb) to 4000K (Figure lc), the behaviour of 
the optical mode becomes increasingly chaotic. There is 
a broad range of frequencies shown in Figure Ic as 
compared to Figure la. It should also be pointed out 
that the optical frequency decreases very rapidly with 
temperature, while the acoustical mode is relatively 
stable. It is interesting to note that the temperature which 
causes the optical mode to behave chaotically in frequency 
space is the same temperature at which we observe the 
beginning of the decrease in heat capacity. The reason 
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Figure 2 (a) Plot of the intensities of the optical modes for -(CO~ as a function of time for the same conditions as Figure 
la; (b) same as (a) except for 300 K;  (c) same as (a) except for 4000 K; (d) same as (c) except for the harmonic model of~CO~ 
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Figure 3 (a) Three dimensional plot of the time-dependent frequencies v e r s u s  the intensities for a temperature of 5 K; (b) same as (a) except for 
2617K 

for this decrease is thus that the group vibrations which 
make up the optical mode no longer exist. This is because 
the energy in the molecule is distributed such that some 
bonds have very large displacements (deficit of potential 
energy). These irregularities are of local nature, and thus 
any group motion consisting of a combination of these 
modes will become chaotic. What has happened is that 
the description of the motion of the atoms has changed. 
There are still the same number of vibrational modes, 
but the group vibrations which describe the optical mode 
at low temperature no longer exist. In the harmonic 
model, the group vibrations always exist and there can 
never be chaotic motion. For anharmonic non-separable 
Hamiltonians, chaotic motion destroys the coherence of 
the collective modes. Figure ld shows the time-dependent 
frequencies of the optical and acoustical modes of the 
harmonic model for a temperature of 4000 K. This figure 
should, be compared to Figures lc and la. As can be 
seen, there is little difference between Figures la and ld, 
but there is a large difference between Figures Ic and Id. 
Again, this shows that the effect of anharmonicity at large 
temperatures (Figure Ic) is significant, while there are no 
effects at low temperatures (Figure la). 

Figure 2 shows the intensity of the optical mode as a 
function of time. This figure corresponds to Figure I. 
The principle feature of Figure 2 is that, for lower 
temperatures (Figures 2a, b) and the harmonic model 
(Figure 2d), the distribution of intensity is very broad 
and the values are much larger than those found for the 
high temperature (Figure 2c). The intensity of the optical 
mode for the low temperatures and harmonic cases is 
larger because there are a group of regular vibrations 
which are sufficiently populated, while at higher tempera- 
tures the group of vibrations are chaotic and they cannot 
be populated. Figure 3 shows a comparison of the 
intensities of the acoustical and optical modes at a low 
temperature. Even for temperatures where the group 
vibrations are a good approximation (Figure 3a), the 
population is predominantly in the acoustical modes. If 
the temperature is increased in order to attempt to 
populate the optical modes, chaotic motion occurs, 

(Figure 3b). This is in agreement with a previous study 
where FFT methods could not locate optical modes at 
all over a 4ps trajectory (see Figure 4 of ref. 22). In 
that study, we did not fully explain the significance of 
this result because the purpose of that work was to 
demonstrate the new capability of the MUSIC analysis 
for polymer dynamics. 

CONCLUSIONS 

We have shown that the description of the vibrations in 
a polymer chain using collective modes is not valid for 
high temperatures. The optical modes are the most 
sensitive to anharmonicity and thus to temperature. 
There is a critical temperature at which the optical 
vibrations begin to behave more as a set of N local modes. 
The acoustic modes appear to remain stable over a large 
range of T. It is fortunate that the temperature required 
to cause sufficiently large amplitude vibrations is greater 
than that of the melting transition. However, we expect 
that when the lower force-constant bending and torsional 
degrees of freedom are added, this critical temperature 
will be reduced, and as the temperature approaches the 
critical temperature for chaos, the accuracy of the 
harmonic approximation decreases. Finally, we mention 
that while the optical modes do tend to disappear in the 
sense that they become chaotic, the total number of 
vibrations does not change until there is a phase change. 
Work is in progress to study the ramification of this 
behaviour for other dynamical processes. 
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